Search results for "Ambient space"
showing 3 items of 3 documents
Champs de vecteurs analytiques et champs de gradients
2002
A theorem of Łojasiewicz asserts that any relatively compact solution of a real analytic gradient vector field has finite length. We show here a generalization of this result for relatively compact solutions of an analytic vector field X with a smooth invariant hypersurface, transversally hyperbolic for X, where the restriction of the field is a gradient. This solves some instances of R. Thom's Gradient Conjecture. Furthermore, if the dimension of the ambient space is three, these solutions do not oscillate (in the sense that they cut an analytic set only finitely many times); this can also be applied to some gradient vector fields.
Multiprojective spaces and the arithmetically Cohen-Macaulay property
2019
AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.
Estimates for Sums of Eigenvalues of the Free Plate via the Fourier Transform
2017
Using the Fourier transform, we obtain upper bounds for sums of eigenvalues of the free plate.